Страница: 1
2 >> [Всего задач: 6]
Задача
65230
(#1)
|
|
Сложность: 3+ Классы: 10,11
|
У двух трапеций соответственно равны углы и диагонали. Верно ли, что такие трапеции равны?
Задача
65231
(#2)
|
|
Сложность: 3+ Классы: 10,11
|
Прямая l перпендикулярна одной из медиан треугольника. Серединные перпендикуляры к сторонам этого треугольника пересекают прямую l в трёх точках. Докажите, что одна из них является серединой отрезка, образованного двумя оставшимися.
Задача
65232
(#3)
|
|
Сложность: 4- Классы: 10,11
|
O – точка пересечения диагоналей трапеции ABCD. Прямая, проходящая через C и точку, симметричную B относительно O, пересекает основание AD в точке K. Докажите, что SAOK = SAOB + SDOK.
Задача
65233
(#4)
|
|
Сложность: 4- Классы: 10,11
|
В треугольнике ABC M – середина стороны BC, P – точка пересечения касательных в точках B и C к описанной окружности, N – середина отрезка MP. Отрезок AN пересекает описанную окружность в точке Q. Докажите, что ∠PMQ = ∠MAQ.
Задача
65234
(#5)
|
|
Сложность: 4+ Классы: 10,11
|
В пространстве дан треугольник ABC и сферы S1 и S2, каждая из которых проходит через точки A, B и C. Для точек M сферы S1, не лежащих в плоскости треугольника ABC, проводятся прямые MA, MB и MC, пересекающие сферу S2 вторично в точках A1, B1 и C1 соответственно. Докажите, что плоскости, проходящие через точки A1, B1 и C1, касаются фиксированной сферы либо проходят через фиксированную точку.
Страница: 1
2 >> [Всего задач: 6]