Страница:
<< 1 2
3 4 >> [Всего задач: 16]
|
|
Сложность: 3 Классы: 5,6,7
|
В комнате стоят 20 стульев двух цветов: синего и красного. На каждый из стульев сел либо рыцарь, либо лжец. Рыцари всегда говорят правду, лжецы всегда лгут. Каждый из сидящих заявил, что он сидит на синем стуле. Затем они как-то пересели, после чего половина из сидящих сказали, что сидят на синих стульях, а остальные сказали, что сидят на красных. Сколько рыцарей теперь сидит на красных стульях?
В ряд записаны всевозможные правильные несократимые дроби, знаменатели которых не больше ста. Маша и Света ставят знаки "+" или "–' перед любой дробью, перед которой знак еще не стоит. Они делают это по очереди, но известно, что Маше придётся сделать последний ход и вычислить результат действий. Если он получится целым, то Света даст ей шоколадку. Сможет ли Маша получить шоколадку независимо от действий Светы?
Объем бутылки кваса – 1,5 литра. Первый выпил половину бутылки, второй – треть того, что осталось после первого, третий – четверть оставшегося от предыдущих, и так далее, четырнадцатый – пятнадцатую часть оставшегося. Сколько кваса осталось в бутылке?
Можно ли внутри выпуклого пятиугольника отметить 18 точек так, чтобы внутри каждого из десяти треугольников, образованных его вершинами, отмеченных точек было поровну?
Дан прямоугольный параллелепипед, у которого все измерения (длина, ширина и высота) – целые числа. Известно, что если длину и ширину увеличить на 1, а высоту уменьшить на 2, то объем параллелепипеда не изменится. Докажите, что какое-то из измерений данного параллелепипеда кратно трем.
Страница:
<< 1 2
3 4 >> [Всего задач: 16]