ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 66530  (#2)

Темы:   [ Разложение на множители ]
[ Признаки делимости (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Шноль Д.Э.

Найдите наименьшее натуральное число n, для которого n2 + 20n + 19 делится на 2019.
Прислать комментарий     Решение


Задача 66530  (#2)

Темы:   [ Разложение на множители ]
[ Признаки делимости (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Автор: Шноль Д.Э.

Найдите наименьшее натуральное число n, для которого n2 + 20n + 19 делится на 2019.
Прислать комментарий     Решение


Задача 66536  (#2)

Темы:   [ Вписанные и описанные окружности ]
[ Треугольники (прочее) ]
[ Планиметрия (прочее) ]
Сложность: 3
Классы: 7,8,9,10,11

В остроугольном треугольнике ABC проведены высоты AA' и BB'. Точка O – центр окружности, описанной около треугольника ABC. Докажите, что расстояние от точки A' до прямой B' равно расстоянию от точки B' до прямой A'.
Прислать комментарий     Решение


Задача 66610  (#2)

Темы:   [ Признаки делимости (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 9,10,11

На экране компьютера напечатано натуральное число, делящееся на 7, а курсор находится в промежутке между некоторыми двумя его соседними цифрами. Докажите, что существует такая цифра, что, если ее впечатать в этот промежуток любое число раз, то все получившиеся числа также будут делиться на 7. Например, все числа 259, 2569, 25669, 256669, ..., а также 2359, 23359, 233359, ... делятся на 7.
Прислать комментарий     Решение


Задача 66614  (#2)

Темы:   [ Количество и сумма делителей числа ]
[ Теория чисел. Делимость (прочее) ]
[ Целочисленные решетки (прочее) ]
Сложность: 4
Классы: 9,10,11

Существует ли такая гипербола, задаваемая уравнением вида $y=\frac{a}{x}$, что в первой координатной четверти (x>0, y>0) под ней лежат ровно 82 точки с целочисленными координатами?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .