ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 590]      



Задача 109627

Темы:   [ НОД и НОК. Взаимная простота ]
[ Принцип крайнего (прочее) ]
[ Подсчет двумя способами ]
[ Куб ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4-
Классы: 8,9,10

В вершинах куба записали восемь различных натуральных чисел, а на каждом его ребре – наибольший общий делитель двух чисел, записанных на концах этого ребра. Могла ли сумма всех чисел, записанных в вершинах, оказаться равной сумме всех чисел, записанных на рёбрах?

Прислать комментарий     Решение

Задача 115867

Темы:   [ Вписанные и описанные окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Средняя линия трапеции ]
[ Признаки подобия ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9,10,11

Дан четырёхугольник ABCD. Оказалось, что описанная окружность треугольника ABC, касается стороны CD, а описанная окружность треугольника ACD касается стороны AB. Докажите, что диагональ AC меньше, чем расстояние между серединами сторон AB и CD.

Прислать комментарий     Решение

Задача 98579

Темы:   [ Рациональные и иррациональные числа ]
[ Целая и дробная части. Принцип Архимеда ]
[ Примеры и контрпримеры. Конструкции ]
[ Арифметика остатков (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4
Классы: 9,10,11

Существуют ли такие иррациональные числа a и b, что  a > 1,  b > 1,  и  [am]  отлично от  [bn]  при любых натуральных числах m и n?

Прислать комментарий     Решение

Задача 64980

Темы:   [ Общая касательная к двум окружностям ]
[ Радикальная ось ]
[ Касающиеся окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 9,10,11

В угол вписаны две окружности ω и Ω. Прямая l пересекает стороны угла в точках A и F, окружность ω в точках B и C, окружность Ω в точках D и E (порядок точек на прямой – A, B, C, D, E, F). Пусть  BC = DE.  Докажите, что  AB = EF.

Прислать комментарий     Решение

Задача 77897

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Свойства симметрии и центра симметрии ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Выпуклые многоугольники ]
[ Классические неравенства (прочее) ]
Сложность: 4+
Классы: 8,9,10

В данный треугольник поместить центрально-симметричный многоугольник наибольшей площади.

Прислать комментарий     Решение

Страница: << 112 113 114 115 116 117 118 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .