ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 151 152 153 154 155 156 157 >> [Всего задач: 2247]      



Задача 102698

Темы:   [ Ромбы. Признаки и свойства ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4
Классы: 8,9

В ромбе ABCD через точки B, C, D проведена окружность с центром в точке O1, а через точки A, B, C проведена окружность с центром в точке O2. Известно, что отношение длины отрезка O1O2 к длине отрезка BO2 равно 3. Найдите величину угла ABO2.

Прислать комментарий     Решение


Задача 108176

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Свойства биссектрис, конкуррентность ]
[ Покрытия ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 4
Классы: 7,8,9

Докажите, что остроугольный треугольник полностью покрывается тремя квадратами, построенными на его сторонах как на диагоналях.
Прислать комментарий     Решение


Задача 108200

Темы:   [ Описанные четырехугольники ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 8,9

Автор: Сонкин М.

Окружность с центром O вписана в четырёхугольник ABCD и касается его непараллельных сторон BC и AD в точках E и F соответственно. Пусть прямая AO и отрезок EF пересекаются в точке K , прямая DO и отрезок EF – в точке N , а прямые BK и CN – в точке M . Докажите, что точки O , K , M и N лежат на одной окружности.
Прислать комментарий     Решение


Задача 108647

Темы:   [ Параллелограмм Вариньона ]
[ Вспомогательная окружность ]
[ Неравенство треугольника (прочее) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

M – точка пересечения диагоналей вписанного четырёхугольника, N – точка пересечения его средних линий (отрезков, соединяющих середины противоположных сторон), O – центр описанной окружности. Докажите, что OM ON .
Прислать комментарий     Решение


Задача 108668

Темы:   [ Замечательное свойство трапеции ]
[ Отношение, в котором биссектриса делит сторону ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

Точка M – середина стороны AC треугольника ABC . На отрезке AM выбрана точка K , на отрезке BM – точка L , на отрезке BK – точка N . При этом KL || AB , MN || BC , CL = 2KM . Докажите, что CN – биссектриса угла ACL .
Прислать комментарий     Решение


Страница: << 151 152 153 154 155 156 157 >> [Всего задач: 2247]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .