Страница:
<< 197 198 199 200
201 202 203 >> [Всего задач: 1221]
В стране 1988 городов и 4000 дорог.
Докажите, что можно указать кольцевой маршрут, проходящий не более, чем через 20 городов (каждая дорога соединяет два города).
Из центра окружности выходят N векторов, концы которых делят её на N равных дуг. Некоторые векторы синие, остальные – красные. Подсчитаем сумму углов "красный вектор – синий вектор" (каждый угол вычисляется от красного вектора к синему против часовой стрелки) и разделим её на общее число всех таких углов. Докажите, что полученная величина "среднего угла" равна 180°.
|
|
Сложность: 4 Классы: 8,9,10
|
В прямоугольной таблице m строк и n столбцов (m < n). В некоторых клетках таблицы стоят звёздочки, так что в каждом столбце стоит хотя бы одна звёздочка. Докажите, что существует хотя бы одна такая звёздочка, что в одной строке с нею находится больше звёздочек, чем с нею в одном столбце.
Имеется 50 серебряных монет, упорядоченных по весу, и 51 золотая монета,
они также упорядочены по весу. Известно, что все монеты по весу различны. В нашем
распоряжении – двухчашечные весы, позволяющие про каждые две монеты установить, какая тяжелее. Как за семь взвешиваний найти монету, занимающую среди всех монет 51-е место?
|
|
Сложность: 4 Классы: 10,11
|
В равнобедренном треугольнике ABC (AB = AC) угол A равен α. На стороне AB взята точка D так, что AD = AB/n. Найдите сумму n – 1 углов, под которыми виден отрезок AD из точек, делящих сторону BC на n равных частей:
а) при n = 3;
б) при произвольном n.
Страница:
<< 197 198 199 200
201 202 203 >> [Всего задач: 1221]