ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 231]      



Задача 98024

Темы:   [ Уравнения в целых числах ]
[ Цепные (непрерывные) дроби ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2
Классы: 7,8,9

Решить в натуральных числах уравнение:  

Прислать комментарий     Решение

Задача 103861

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Дроби (прочее) ]
Сложность: 2
Классы: 6,7

Расставьте по кругу шесть различных чисел так, чтобы каждое из них равнялось произведению двух соседних.

Прислать комментарий     Решение

Задача 103884

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Обыкновенные дроби ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Прямоугольник разрезан на несколько прямоугольников, периметр каждого из которых – целое число метров.
Верно ли, что периметр исходного прямоугольника – тоже целое число метров?

Прислать комментарий     Решение

Задача 103887

Темы:   [ Ребусы ]
[ Обыкновенные дроби ]
Сложность: 2
Классы: 7

Расставьте скобки и знаки арифметических действий так, чтобы получилось верное равенство:  

Прислать комментарий     Решение

Задача 104063

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Обыкновенные дроби ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 6,7,8

Винни-Пух и Пятачок поделили между собой торт. Пятачок захныкал, что ему досталось мало. Тогда Пух отдал ему треть своей доли. От этого у Пятачка количество торта увеличилось втрое. Какая часть торта была вначале у Пуха и какая у Пятачка?

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 231]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .