Страница:
<< 112 113 114 115
116 117 118 >> [Всего задач: 590]
|
|
Сложность: 5 Классы: 8,9,10
|
В Думе 1600 депутатов, которые образовали 16000 комитетов по 80 человек в каждом.
Докажите, что найдутся два комитета, имеющие не менее четырёх общих членов.
|
|
Сложность: 5+ Классы: 9,10,11
|
Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке.
а) Какие коробки следует купить при n = 10 и k = 3 ?
б) Тот же вопрос для произвольных натуральных n ≥ k.
Даны три неотрицательных числа a, b, c. Про них известно, что
a4 + b4 + c4 ≤ 2(a²b² + b²c² + c²a²).
а) Докажите, что каждое из них не больше суммы двух других.
б) Докажите, что a² + b² + c² ≤ 2(ab + bc + ca).
в) Следует ли из неравенства пункта б) исходное неравенство?
Диагонали выпуклого четырёхугольника ABCD пересекаются в точке E.
Известно, что площадь каждого из треугольников ABE и DCE равна 1, площадь всего четырёхугольника не превосходит 4, AD = 3. Найдите сторону BC.
В выпуклом четырёхугольнике ABCD точка E – пересечение
диагоналей. Известно, что площадь каждого из треугольников ABE и
DCE равна 7, а площадь всего четырёхугольника не превосходит 28;
AD =
. Найдите сторону BC.
Страница:
<< 112 113 114 115
116 117 118 >> [Всего задач: 590]