Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 181]
Докажите, что площадь правильного двенадцатиугольника, вписанного в окружность радиуса 1, равна 3.
|
|
Сложность: 3 Классы: 7,8,9
|
Существует ли правильный многоугольник, в котором ровно половина диагоналей параллельна сторонам?
|
|
Сложность: 3 Классы: 10,11
|
Дан правильный девятиугольник.
Сколькими способами можно выбрать три его вершины так, чтобы они являлись вершинами равнобедренного треугольника?
Все углы выпуклого многоугольника A1...An равны, и из некоторой его внутренней точки O все стороны видны под равными углами.
Докажите, что этот многоугольник правильный.
Бумажная лента постоянной ширины завязана простым узлом и затем стянута так, чтобы узел стал плоским (см. рис.).
Докажите, что узел имеет форму правильного пятиугольника.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 181]