Страница:
<< 159 160 161 162
163 164 165 >> [Всего задач: 2247]
|
|
Сложность: 4 Классы: 9,10,11
|
Четырёхугольник ABCD вписан в окружность. Биссектрисы углов В и С пересекаются в точке, лежащей на отрезке AD.
Найдите AD, если АВ = 5, СD = 3.
|
|
Сложность: 4 Классы: 8,9,10
|
В выпуклом четырёхугольнике ABCD: ∠ВАС = 20°, ∠ВСА = 35°, ∠ВDС = 40°, ∠ВDА = 70°.
Найдите угол между диагоналями четырёхугольника.
|
|
Сложность: 4 Классы: 10,11
|
Четырёхугольник ABCD вписан в окружность с центром O, причём точка O не лежит ни на одной из диагоналей этого четырёхугольника. Известно, что центр описанной окружности треугольника AOC лежит на прямой BD. Докажите, что центр описанной окружности треугольника BOD лежит на прямой AC.
|
|
Сложность: 4 Классы: 10,11
|
AD и BE — высоты треугольника ABC. Оказалось, что точка C', симметричная вершине C относительно середины отрезка DE, лежит на стороне AB. Докажите, что AB –
касательная к окружности, описанной около треугольника DEC'.
В треугольнике ABC M – точка пересечения медиан,
O – центр вписанной окружности, A', B', C' – точки ее касания со сторонами
BC, CA, AB соответственно. Докажите, что, если CA' = AB,
то прямые OM и AB перпендикулярны.
Страница:
<< 159 160 161 162
163 164 165 >> [Всего задач: 2247]