Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 507]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Многоугольник можно разрезать на две равные части тремя различными способами.
Верно ли, что у него обязательно есть центр или ось симметрии?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Четыре перпендикуляра, опущенные из вершин выпуклого пятиугольника на противоположные стороны, пересекаются в одной точке.
Докажите, что пятый такой перпендикуляр тоже проходит через эту точку.
|
|
Сложность: 4- Классы: 9,10
|
На окружности отмечены 2012 точек, делящих её на равные дуги. Из них выбрали k точек и построили выпуклый k-угольник с вершинами
в выбранных точках. При каком наибольшем k могло оказаться, что у этого многоугольника нет параллельных сторон?
|
|
Сложность: 4- Классы: 8,9,10
|
В выпуклом пятиугольнике P провели все диагонали, в результате чего он оказался разбитым на десять треугольников и один пятиугольник P'. Из суммы площадей треугольников, прилегающих к сторонам P, вычли площадь P'; получилось число N. Совершив те же операции с пятиугольником P',
получили число N'. Докажите, что N > N'.
Биссектриса треугольника делит его сторону на два отрезка.
Докажите, что к большей из двух других сторон треугольника
примыкает больший из них.
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 507]