Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 231]
|
|
Сложность: 3 Классы: 10,11
|
На экране компьютера стоят в ряд 200 человек. На самом деле эта картинка составлена из 100 фрагментов, на каждом – пара: взрослый и ребёнок пониже ростом. Разрешается в каждом из фрагментов изменить масштаб, уменьшив при этом одновременно рост взрослого и ребёнка в одинаковое целое число раз (масштабы разных фрагментов можно менять независимо друг от друга). Докажите, что это можно сделать так, что на общей картинке все взрослые будут выше всех детей.
|
|
Сложность: 3 Классы: 6,7,8
|
Записаны шесть положительных несократимых дробей, сумма числителей которых равна сумме их знаменателей. Паша перевёл каждую из неправильных дробей в смешанное число. Обязательно ли найдутся два числа, у которых одинаковы либо целые части, либо дробные части?
|
|
Сложность: 3+ Классы: 9,10
|
Докажите, что бесконечная десятичная дробь 0,1234567891011121314... (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число.
|
|
Сложность: 3+ Классы: 9,10
|
Числа a, b, p, q, r, s – натуральные, причём p/q < a/b < r/s и qr – ps = 1. Докажите, что b ≥ q + s.
|
|
Сложность: 3+ Классы: 9,10,11
|
Пусть числа a и b определены равенством a/b = [a0; a1, a2, ..., an]. Докажите, что уравнение ax – by = 1 c неизвестными x и y имеет решением одну из пар (Qn–1, Pn–1) или (– Qn–1, – Pn–1), где Pn–1/Qn–1 – (n–1)-я подходящая дробь. От чего зависит, какая именно из пар является решением?
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 231]