ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 215]      



Задача 116814

Тема:   [ Числовые таблицы и их свойства ]
Сложность: 3+
Классы: 9,10,11

В каждой клетке клетчатого квадрата 7×7 стоит по числу. Сумма чисел в каждом квадратике 2×2 и 3×3 равна 0.
Докажите, что сумма чисел в 24 клетках, расположенных по периметру квадрата, тоже равна 0.

Прислать комментарий     Решение

Задача 35516

Темы:   [ Числовые таблицы и их свойства ]
[ Замощения костями домино и плитками ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4-
Классы: 9,10

В каждой клетке таблицы 9×9 записано число, по модулю меньшее 1. Известно, что сумма чисел в каждом квадратике 2×2 равна 0.
Докажите, что сумма чисел в таблице меньше 9.

Прислать комментарий     Решение

Задача 64550

Темы:   [ Числовые таблицы и их свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-

В клетки таблицы размером 9×9 расставили все натуральные числа от 1 до 81. Вычислили произведения чисел в каждой строке таблицы и получили набор из девяти чисел. Затем вычислили произведения чисел в каждом столбце таблицы и также получили набор из девяти чисел.
Могли ли полученные наборы оказаться одинаковыми?

Прислать комментарий     Решение

Задача 64603

Темы:   [ Числовые таблицы и их свойства ]
[ Перестановки и подстановки (прочее) ]
[ Правило произведения ]
Сложность: 4-
Классы: 10,11

Дана таблица (см. рис.).

Можно в ней переставлять строки, а также столбцы (в любом порядке).
Сколько различных таблиц можно получить таким образом из данной таблицы?

Прислать комментарий     Решение

Задача 64636

Темы:   [ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 4-
Классы: 10,11

Автор: Храмцов Д.

Все клетки квадратной таблицы n×n пронумерованы в некотором порядке числами от 1 до n². Петя делает ходы по следующим правилам. Первым ходом он ставит фишку в любую клетку. Каждым последующим ходом Петя может либо поставить новую фишку на какую-то клетку, либо переставить фишку из клетки с номером a ходом по горизонтали или по вертикали в клетку с номером большим, чем a. Каждый раз, когда фишка попадает в клетку, эта клетка немедленно закрашивается; ставить фишку на закрашенную клетку запрещено. Какое наименьшее количество фишек потребуется Пете, чтобы независимо от исходной нумерации он смог за несколько ходов закрасить все клетки таблицы?

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 215]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .