Страница:
<< 114 115 116 117
118 119 120 >> [Всего задач: 694]
Длины сторон некоторого треугольника и диаметр вписанной в него
окружности являются четырьмя последовательными членами арифметической
прогрессии. Найдите все такие треугольники.
|
|
Сложность: 4- Классы: 8,9,10
|
Алиса и Базилио играют в следующую игру; из мешка,
первоначально содержащего 1331 монету, они по очереди берут монеты, причем
первый ход делает Алиса и берет 1 монету, а далее при каждом следующем ходе
игрок берет (по своему усмотрению) либо столько же монет, сколько взял другой
игрок последним ходом, либо на одну больше. Проигрывает тот, кто не может
сделать очередной ход по правилам. Кто из игроков может обеспечить себе выигрыш
независимо от ходов другого?
|
|
Сложность: 4- Классы: 7,8,9
|
Дорога протяженностью 1 км полностью освещена фонарями, причем каждый
фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее
количество фонарей может быть на дороге, если известно, что после
выключения любого фонаря дорога будет освещена уже не полностью?
|
|
Сложность: 4- Классы: 8,9,10
|
Последовательность a1, a2, a3, ... натуральных чисел такова, что an+2 = an+1an + 1 при всех n.
а) a1 = a2 = 1. Докажите, что ни один из членов последовательности не делится на 4.
б) Докажите, что an – 22 – составное число при любом n > 10.
Что больше:
а) 1/101 + 1/102 + ... + 1/199 + 1/200 или 1/2 ?
б) 1/2·3/4·5/6·...·97/98·99/100 или 1/10 ?
Страница:
<< 114 115 116 117
118 119 120 >> [Всего задач: 694]