Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 488]
|
|
Сложность: 3 Классы: 7,8,9
|
На плоскости отмечены четыре точки. Докажите, что их
можно разбить на две группы так, что эти группы точек нельзя
будет отделить одну от другой никакой прямой.
|
|
Сложность: 3 Классы: 7,8,9
|
Маляр-хамелеон ходит по клетчатой доске как хромая ладья (на одну клетку по вертикали или горизонтали). Попав в очередную клетку, он либо перекрашивается в её цвет, либо перекрашивает клетку в свой цвет. Белого маляра-хамелеона кладут на чёрную доску размером 8×8 клеток. Сможет ли он раскрасить её в шахматном порядке?
|
|
Сложность: 3 Классы: 6,7,8
|
Солдаты построены в две шеренги по n человек, так что каждый солдат из первой шеренги не выше стоящего за ним солдата из второй шеренги. В шеренгах солдат выстроили по росту. Докажите, что после этого каждый солдат из первой шеренги также будет не выше стоящего за ним солдата из второй шеренги.
|
|
Сложность: 3 Классы: 8,9,10
|
На плоскости синим и красным цветом окрашено несколько точек так, что никакие три точки одного цвета не лежат на одной прямой (точек каждого цвета не меньше трёх). Докажите, что какие-то три точки одного цвета образуют треугольник, на трёх сторонах которого лежит не более двух точек другого цвета.
|
|
Сложность: 3 Классы: 8,9,10
|
На небе бесконечное число звёзд. Астроном приписал каждой звезде пару натуральных чисел, выражающую яркость и размер. При этом каждые две звезды отличаются хотя бы в одном параметре. Докажите, что найдутся две звезды, первая из которых не меньше второй как по яркости, так и по размеру.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 488]