Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 92]
|
|
Сложность: 4- Классы: 10,11
|
Многочлен степени n > 1 имеет n разных корней х1, х2, ..., хn. Его производная имеет корни y1, y2, ..., yn–1.
Докажите неравенство
|
|
Сложность: 4- Классы: 10,11
|
Решите уравнение 2 sin πx/2 – 2 cos πx = x5 + 10x – 54.
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что при умножении многочлена (x + 1)n–1 на любой многочлен, отличный от нуля, получается многочлен, имеющий не менее n отличных от нуля коэффициентов.
|
|
Сложность: 4 Классы: 10,11
|
Пусть f(x) = (x – a)(x – b)(x – c) – многочлен третьей степени с комплексными корнями a, b, c.
Докажите, что корни производной этого многочлена лежат внутри треугольника с вершинами в точках a, b, c.
[Теорема Гаусса-Люка]
|
|
Сложность: 4 Классы: 10,11
|
Пусть f(x) – многочлен степени n с корнями α1, ..., αn. Определим многоугольник M как выпуклую оболочку точек α1, ..., αn на комплексной плоскости. Докажите, что корни производной этого многочлена лежат внутри многоугольника M.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 92]