ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 100]      



Задача 35456

Темы:   [ Необычные построения (прочее) ]
[ Стереометрия (прочее) ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 10,11

Даны шар и плоскость. На поверхности шара можно делать построения циркулем, а на плоскости – циркулем и линейкой.
Как на плоскости построить отрезок, равный радиусу шара?

Прислать комментарий     Решение

Задача 53919

Темы:   [ Построения одним циркулем ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

Разделите окружность с данным центром на шесть равных частей, пользуясь только циркулем.

Прислать комментарий     Решение

Задача 54648

Тема:   [ Построения одним циркулем ]
Сложность: 3
Классы: 8,9

Пользуясь только циркулем, удвойте данный орезок, то есть постройте для данных точек A и B такую точку C, чтобы точки A, B, C лежали на одной прямой (B между A и C) и  AC = 2AB.

Прислать комментарий     Решение

Задача 54771

Темы:   [ Необычные построения (прочее) ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
Сложность: 3
Классы: 8,9

Имеется угольник с углом в 70°. Как построить с его помощью угол в 40°?

Прислать комментарий     Решение

Задача 57267

Тема:   [ Необычные построения (прочее) ]
Сложность: 3
Классы: 8,9

Докажите, что угол величиной no, где n — целое число, не делящееся на 3, можно разделить на n равных частей с помощью циркуля и линейки.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .