Страница:
<< 104 105 106 107
108 109 110 >> [Всего задач: 1547]
На плоскости дано 300 точек, никакие 3
которых не лежат на одной прямой.
Докажите, что существует 100 попарно не пересекающихся
треугольников с вершинами в этих точках.
Существует ли фигура, не имеющая осей симметрии, но
переходящая в себя при некотором повороте?
Докажите, что при центральной симметрии окружность переходит
в окружность.
Докажите, что треугольник ABC является правильным тогда и только тогда, когда при повороте на 60° (либо по часовой стрелке, либо против) относительно точки A вершина B переходит в вершину C.
|
|
Сложность: 3- Классы: 6,7,8
|
Коля и Макс живут в городе с треугольной сеткой дорог (см. рисунок). В этом городе передвигаются на велосипедах, при этом разрешается поворачивать только налево. Коля поехал в гости к Максу и по дороге сделал ровно 4 поворота налево. На следующий день Макс поехал к Коле и приехал к нему, совершив только один поворот налево. Оказалось, что длины их маршрутов одинаковы. Изобразите, каким образом они могли ехать (дома Коли и Макса отмечены).
Страница:
<< 104 105 106 107
108 109 110 >> [Всего задач: 1547]