ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".)

   Решение

Задачи

Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 12601]      



Задача 58472

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что если ac - b2 = 0, то кривая Q(xy) + 2dx + 2ey = f, где Q (xy) = ax2 + 2bxy + cy2 изометрична либо кривой y2 = 2px (называемой параболой), либо паре параллельных прямых y2 = c2, либо паре слившихся прямых y2 = 0, либо представляет собой пустое множество.
Прислать комментарий     Решение


Задача 58473

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что множество точек, сумма расстояний от которых до двух заданных точек F1 и F2 — постоянная величина, есть эллипс.
Прислать комментарий     Решение


Задача 58474

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что середины параллельных хорд эллипса лежат на одной прямой.
Прислать комментарий     Решение


Задача 58475

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что уравнение касательной к эллипсу $ {\frac{x^2}{a^2}}$ + $ {\frac{y^2}{b^2}}$ = 1, проведенной в точке X = (x0, y0), имеет вид

$\displaystyle {\frac{x_0x}{a^2}}$ + $\displaystyle {\frac{y_0y}{b^2}}$ = 1.


Прислать комментарий     Решение

Задача 58476

Тема:   [ Кривые второго порядка ]
Сложность: 3
Классы: 10

Докажите, что эллиптическое зеркало обладает тем свойством, что пучок лучей света, исходящий из одного фокуса, сходится в другом.
Прислать комментарий     Решение


Страница: << 149 150 151 152 153 154 155 >> [Всего задач: 12601]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .