Страница: 1
2 3 4 5 >> [Всего задач: 21]
|
|
Сложность: 2 Классы: 10,11
|
Вычислите функции gk,l(x) при 0 ≤ k + l ≤ 4 и покажите, что все они являются многочленами.
Определение многочленов Гаусса gk,l(x) можно найти в справочнике.
|
|
Сложность: 2+ Классы: 10,11
|
Докажите следующие свойства функций gk,l(x)
(определения функций gk,l(x)
смотри здесь):
а) gk,l(x) =
, где hm(x) = (1 – x)(1 – x²)...(1 – xm) (h0(x) = 1);
б) gk,l(x) = gl,k(x);
в) gk,l(x) = gk–1,l(x) + xkgk,l–1(x) = gk,l–1(x) + xlgk–1,l(x);
г) gk,l+1(x) = g0,l(x) + xg1,l(x) + ... + xkgk,l(x);
д) gk,l(x) – многочлен степени kl.
Многочлены gk,l(x) называются многочленами Гаусса. Их свойства во многом аналогичны свойствам биномиальных
коэффициентов. В частности, среди многочленов они играют ту же роль, что и биномиальные коэффициенты среди чисел.
|
|
Сложность: 3 Классы: 9,10,11
|
Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу
61099)
удовлетворяют начальным условиям
T0(x) = 1, T1(x) = x; U0(x) = 1, U1(x) = 2x, и рекуррентным формулам Tn+1(x) = 2xTn(x) – Tn–1(x), Un+1(x) = 2xUn(x) – Un–1(x).
|
|
Сложность: 3+ Классы: 9,10,11
|
Докажите, что у многочлена 2Tn(x/2) старший коэффициент равен единице, а все остальные коэффициенты – целые числа.
Здесь Tn – многочлен Чебышёва, смотри задачу
61099.
|
|
Сложность: 3+ Классы: 10,11
|
а) Определение (смотри в справочнике)
функций gk,l(x) не позволяет вычислять их значения при x = 1. Но, поскольку функции gk,l(x) являются многочленами, они определены и при x = 1. Докажите равенство
б) Какие свойства биномиальных коэффициентов получаются, если в свойства б) – г) из задачи 61522 подставить значение x = 1?
Страница: 1
2 3 4 5 >> [Всего задач: 21]