Страница:
<< 1 2 3 4
5 >> [Всего задач: 21]
[Многочлены Фибоначчи и Люка]
|
|
Сложность: 4 Классы: 10,11
|
Вычислите несколько первых многочленов Фибоначчи и Люка (определения многочленов Фибоначчи и Люка смотри здесь).
Какие значения эти многочлены принимают при x = 1? Докажите, что многочлены Люка связаны с многочлены Фибоначчи соотношениями:
а) Ln(x) = Fn–1(x) + Fn+1(x) (n ≥ 1);
б) Fn(x)(x² + 4) = Ln–1(x) + Ln+1(x) (n ≥ 1);
в) F2n(x) = Ln(x)Fn(x) (n ≥ 0);
г) (Ln(x))² + (Ln+1(x))² = (x² + 4)F2n+1(x) (n ≥ 0);
д) Fn+2(x) + Fn–2(x) = (x² + 2)Fn(x).
|
|
Сложность: 4 Классы: 10,11
|
Укажите явный вид коэффициентов в многочленах Fn(x) и Ln(x). Решите задачи 60581 и 60582, используя многочлены Фибоначчи.
Про многочлены Фибоначчи и Люка смотри статьи в справочнике.
[Производящие функции многочленов Чебышева]
|
|
Сложность: 3+ Классы: 10,11
|
Найдите производящие функции последовательностей многочленов Чебышева первого и второго рода:
Определения многочленов Чебышева можно найти в
справочнике.
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что многочлены Фибоначчи и Люка связаны с многочленами Чебышёва
равенствами
Un(x/2) = i–nFn+1(ix); 2Tn(x/2) = i–nLn(ix).
Про многочлены Фибоначчи, Люка и Чебышёва смотри в справочнике.
|
|
Сложность: 4 Классы: 10,11
|
Известно, что cos α° = 1/3. Является ли α рациональным числом?
Страница:
<< 1 2 3 4
5 >> [Всего задач: 21]