Страница:
<< 1 2
3 4 5 >> [Всего задач: 21]
|
|
Сложность: 3+ Классы: 10,11
|
Найдите сумму Sl(x) = g0,l(x) – g1,l–1(x) + g2,l–2(x) – ... + (–1)lgl,0(x).
Определение многочленов Гаусса gk,l(x) можно найти в справочнике.
|
|
Сложность: 4 Классы: 9,10,11
|
Последовательность многочленов P0(x) = 1, P1(x) = x, P2(x) = x² – 1, ... задается условием
Pn+1(x) = xPn(x) – Pn–1(x).
Докажите, что уравнение P100(x) = 0 имеет 100 различных действительных корней на отрезке [–2, 2]. Что это за корни?
|
|
Сложность: 4 Классы: 9,10,11
|
Найдите какой-нибудь многочлен с целыми коэффициентами, корнем которого
является число
+
.
|
|
Сложность: 4+ Классы: 10,11
|
Докажите, что при любых k и l многочлен
gk,l(x) является возвратным, то есть
(Определение многочленов Гаусса см. здесь.)
|
|
Сложность: 3 Классы: 10,11
|
Пусть fk,l(x) – производящая функция последовательности Pk,l(n) из задачи 61525: fk,l(x) = Pk,l(0) + xPk,l(1) + ... + xklPk,l(kl).
а) Докажите равенства: fk,l(x) = fk–1,l(x) + xkfk,l–1(x) = fk,l–1(x) + xlfk–1,l(x).
б) Докажите, что функции fk,l(x) совпадают с многочленами Гаусса gk,l(x) (определение многочленов Гаусса смотри здесь).
Страница:
<< 1 2
3 4 5 >> [Всего задач: 21]