Страница:
<< 112 113 114 115 116 117 118 [Всего задач: 590]
|
|
Сложность: 5- Классы: 9,10,11
|
Дано дерево с n вершинами, n ≥ 2. В его вершинах расставлены числа x1, x2, xn, а на каждом ребре записано произведение чисел, стоящих в концах этого ребра. Обозначим через S сумму чисел на всех рёбрах. Докажите, что
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что для любого неравнобедренного треугольника
, где l1, l2 – наибольшая и наименьшая биссектрисы треугольника, S – его площадь.
|
|
Сложность: 4 Классы: 10,11
|
Основанием прямоугольного параллелепипеда АВСDA1B1C1D1 является квадрат АВСD.
Найдите наибольшую возможную величину угла между прямой BD1 и плоскостью ВDС1.
|
|
Сложность: 5- Классы: 8,9,10
|
Положительные числа х1, ..., хk удовлетворяют неравенствам
а) Докажите, что k > 50.
б) Построить пример таких чисел для какого-нибудь k.
в) Найти минимальное k, для которого пример возможен.
Докажите, что в любом треугольнике имеет место неравенство R ≥ 2r, где R и r – радиусы описанной и вписанной окружностей, причём равенство имеет место только для правильного треугольника.
Страница:
<< 112 113 114 115 116 117 118 [Всего задач: 590]