Страница:
<< 116 117 118 119
120 121 122 >> [Всего задач: 694]
|
|
Сложность: 4- Классы: 9,10,11
|
Правильная игральная кость бросается много раз. Найдите математическое ожидание числа бросков, сделанных до того момента, когда сумма всех выпавших очков достигнет 2010 (то есть стала не меньше 2010).
|
|
Сложность: 4- Классы: 9,10,11
|
Василиса Премудрая расставляет все натуральные числа от 1 до n², где n > 1, в клетки таблицы размером n×n. Кандидат в женихи должен вычеркнуть строку и столбец так, чтобы сумма всех оставшихся чисел была чётной. Всегда ли выполнимо такое задание?
|
|
Сложность: 4- Классы: 9,10,11
|
Высокий прямоугольник ширины 2 открыт сверху, и в него падают в случайной ориентации Г-тримино (см. рисунок).
а) Упало k тримино. Найдите математическое ожидание высоты получившегося многоугольника.
б) Упало 7 тримино. Найдите вероятность того, что сложенная из тримино фигура будет иметь высоту 12.
|
|
Сложность: 4- Классы: 9,10,11
|
Неправдоподобная легенда гласит, что однажды Стирлинг размышлял над числами Стирлинга второго рода и в задумчивости бросал на стол 10 правильных игральных костей. После очередного броска он вдруг заметил, что в выпавшей комбинации очков присутствуют все числа от 1 до 6. Тут же Стирлинг задумался, а какова же вероятность такого события? Какова вероятность, что при бросании 10 костей каждое число очков от 1 до 6 выпадет хотя бы на одной кости?
|
|
Сложность: 4- Классы: 7,8,9
|
При каких n гири массами 1 г, 2 г, 3 г, ..., n г можно разложить на три равные по массе кучки?
Страница:
<< 116 117 118 119
120 121 122 >> [Всего задач: 694]