ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 372]      



Задача 66914

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Четырехугольник $ABCD$ – вписанный. Окружность, проходящая через точки $A$ и $B$, пересекает диагонали $AC$ и $BD$ в точках $E$ и $F$ соответственно. Пусть прямые $AF$ и $BC$ пересекаются в точке $P$, а прямые $BE$ и $AD$ – в точке $Q$. Докажите, что $PQ$ параллельна $CD$.
Прислать комментарий     Решение


Задача 98491

Темы:   [ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 9,10,11

Автор: Жгун В.С.

Треугольник ABC вписан в окружность. Через точку A проведены хорды, пересекающие сторону BC в точках K и L и дугу BC в точках M и N.
Докажите, что если вокруг четырёхугольника KLNM можно описать окружность, то треугольник ABC равнобедренный.

Прислать комментарий     Решение

Задача 108651

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные равные треугольники ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

BD – биссектриса треугольника ABC. Описанная окружность треугольника BDC пересекает отрезок AB в точке E, описанная окружность треугольника ABD пересекает отрезок BC в точке F. Докажите, что  AE = CF.

Прислать комментарий     Решение

Задача 108653

Темы:   [ Вспомогательные равные треугольники ]
[ Биссектриса угла (ГМТ) ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

На сторонах AB и BC треугольника ABC отложены равные отрезки AE и CF соответственно. Окружность, проходящая через точки B, C, E , и окружность, проходящая через точки A, B, F , пересекаются в точках B и D. Докажите, что BD – биссектриса угла ABC.

Прислать комментарий     Решение

Задача 108902

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3
Классы: 8,9

Серединные перпендикуляры к диагоналям BD и AC вписанного четырёхугольника ABCD пересекают сторону AD в точках X и Y соответственно. Докажите, что середина стороны BC равноудалена от прямых BX и CY .
Прислать комментарий     Решение


Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 372]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .