Страница:
<< 195 196 197 198
199 200 201 >> [Всего задач: 1221]
|
|
Сложность: 4 Классы: 7,8,9
|
В квадратной таблице 4×4 расставлены числа 1, 2, 3, ..., 16 так, что сумма четырёх чисел в каждой строке, в каждом столбце и на каждой из двух диагоналей равна одному и тому же числу, причём числа 1 и 16 стоят в противоположных углах таблицы. Докажите, что в этом "магическом квадрате" сумма любых двух чисел, расположенных симметрично относительно центра квадрата, одна и та же.
|
|
Сложность: 4 Классы: 8,9,10
|
Даны два набора из n вещественных чисел: a1, a2, ..., an и b1, b2, ..., bn. Докажите, что если выполняется хотя бы одно из двух условий:
а) из ai < aj следует, что bi ≤ bj;
б) из ai < a < aj, где a = 1/n (a1 + a2 + ... + an), следует, что bi ≤ bj,
то верно неравенство n(a1 b1 + a2b2 + ... + anbn) ≥ (a1 + a2 + ... + an)(b1 + b2 + ... + bn).
|
|
Сложность: 4 Классы: 9,10,11
|
Какое наибольшее количество а) ладей; б) ферзей можно расставить на шахматной доске 8×8 так, чтобы каждая из этих фигур была под ударом не более чем одной из остальных?
Одна под другой выписаны 2n–1 различных последовательностей из нулей и единиц длины n. Известно, что для любых трёх из выписанных последовательностей найдётся такой номер p, что в p-м разряде у всех трёх стоит 1. Доказать, что в некотором разряде у всех выписанных последовательностей стоит 1 и такой разряд только один.
|
|
Сложность: 4 Классы: 9,10,11
|
В стране Анчурии, где правит президент Мирафлорес, приблизилось время новых
президентских выборов. В стране ровно 20 миллионов избирателей, из которых
только один процент поддерживает Мирафлореса (регулярная армия Анчурии).
Мирафлорес, естественно, хочет быть избранным, но, с другой стороны, он хочет,
чтобы выборы были "демократическими". "Демократическим голосованием" Мирафлорес называет вот что: все избиратели разбиваются на равные группы; каждая из этих групп вновь разбивается на некоторое количество равных групп, причём большие группы могут разбиваться на разное количество меньших групп, затем эти группы снова разбиваются и т.д. В самых мелких группах выбирают представителя группы "выборщика" для голосования в большей группе: выборщики в этой большей группе выбирают выборщика для голосования в ещё большей группе и т.д. Наконец, представители самых больших групп выбирают президента. Мирафлорес делит избирателей на группы по своей воле и инструктирует своих сторонников, как им голосовать. Сможет ли он так организовать "демократические" выборы, чтобы его выбрали? (В каждой группе выборщики выбирают своего представителя простым большинством. При равенстве голосов побеждает оппозиция.)
Страница:
<< 195 196 197 198
199 200 201 >> [Всего задач: 1221]