Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 50]
|
|
Сложность: 3 Классы: 9,10,11
|
Точки K и L – середины сторон АВ и ВС
правильного шестиугольника АВСDEF. Отрезки KD и LE пересекаются в точке М. Площадь треугольника DEM равна 12. Найдите площадь четырёхугольника KBLM.
Пусть M и N – середины сторон CD и DE правильного шестиугольника ABCDEF, P – точка пересечения отрезков AM и BN. Докажите, что SABP = SMDNP.
На прямой даны 3 точки
A,
B,
C. На отрезке
AB построен равносторонний
треугольник
ABC1, на отрезке
BC построен равносторонний треугольник
BCA1. Точка
M — середина отрезка
AA1, точка
N — середина отрезка
CC1. Доказать, что треугольник
BMN — равносторонний. (Точка
B лежит
между точками
A и
C; точки
A1 и
C1 расположены по одну сторону от
прямой
AB.)
|
|
Сложность: 4- Классы: 8,9,10
|
На рисунке изображена снежинка, симметричная относительно поворота вокруг точки O на 60° (при этом повороте каждый луч снежинки переходит в другой луч) и отражения относительно прямой OX. Найдите отношение длин отрезков OX : XY. (Пунктирными линиями показаны точки, лежащие на одной прямой.)
Найдите геометрическое место точек
M, лежащих
внутри правильного треугольника
ABC, для которых
MA2 =
MB2 +
MC2.
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 50]