ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В правильный треугольник ABC со стороной a вписана окружность. Эта окружность касается внешним образом трёх других окружностей того же радиуса в точках касания сторон треугольника. Центры внешних окружностей — соответственно O1, O2, O3. Найдите площадь шестиугольника, получающегося при пересечении треугольников ABC и O1, O2, O3.

   Решение

Задачи

Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 1024]      



Задача 66778

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Тригуб А.

В треугольнике $ABC$ $N$ – середина дуги $ABC$ описанной окружности треугольника, $NP$ и $NT$ – касательные к вписанной окружности. Прямые $BP$ и $BT$ пересекают второй раз описанную окружность треугольника в точках $P_1$ и $T_1$ соответственно. Докажите, что $PP_1=TT_1$.
Прислать комментарий     Решение


Задача 102341

Темы:   [ Правильный (равносторонний) треугольник ]
[ Касающиеся окружности ]
Сложность: 3+
Классы: 8,9

В правильный треугольник ABC со стороной a вписана окружность. Эта окружность касается внешним образом трёх других окружностей того же радиуса в точках касания сторон треугольника. Центры внешних окружностей — соответственно O1, O2, O3. Найдите площадь шестиугольника, получающегося при пересечении треугольников ABC и O1, O2, O3.
Прислать комментарий     Решение


Задача 102342

Темы:   [ Правильный (равносторонний) треугольник ]
[ Касающиеся окружности ]
Сложность: 3+
Классы: 8,9

В правильный треугольник DEF вписана окружность радиуса r. Эта окружность касается внешним образом трёх других окружностей того же радиуса в точках касания сторон треугольника. Центры внешних окружностей — соответственно O1, O2, O3. Найдите площадь шестиугольника, получающегося при пересечении треугольников DEF и O1, O2, O3.
Прислать комментарий     Решение


Задача 102448

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что AB = BC, AC = 4$ \sqrt{3}$, радиус вписанной окружности равен 3. Прямая AE пересекает высоту BD в точке E, а вписанную окружность — в точках M и N (M лежит между A и E), ED = 2. Найдите EN.

Прислать комментарий     Решение


Задача 102449

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3+
Классы: 8,9

В равнобедренную трапецию KLMN ( LM$ \Vert$KN) вписана окружность, касающася сторон LM и KN в точках P и Q соответственно, KN = 4$ \sqrt{6}$, PQ = 4. Прямая CN пересекает отрезок PQ в точке C, а вписанную окружность — в точках A и B (A между N и C), PC : CQ = 3. Найдите AC.

Прислать комментарий     Решение


Страница: << 113 114 115 116 117 118 119 >> [Всего задач: 1024]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .