ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две окружности касаются внешним образом в точке K. Прямая, проходящая через точку K, пересекает первую окружность в точке L, а вторую – в точке M. Касательная к первой окружности, проходящая через точку L, пересекает вторую окружность в точках A и B (точка B лежит между A и L). Известно, что BM = 3 и KM = 1. Найдите длину отрезка KL и расстояние от точки L до центра окружности, касающейся отрезка KB и продолжений отрезков AB и AK за точки B и K соответственно. ![]() |
Страница: << 124 125 126 127 128 129 130 >> [Всего задач: 1024]
В треугольнике ABC середины сторон AC, BC, вершина C и точка пересечения медиан лежат на одной окружности.
В прямоугольный треугольник с гипотенузой длины 1 вписали окружность. Через точки её касания с его катетами провели прямую.
Две окружности касаются внешним образом в точке A. Прямая, проходящая
через точку A, пересекает первую окружность в точке B, а вторую
окружность – в точке C. Касательная в точке B к первой окружности пересекает вторую окружность в точках D и E (точка D лежит между B и E). Известно, что
Две окружности касаются внешним образом в точке K. Прямая, проходящая через точку K, пересекает первую окружность в точке L, а вторую – в точке M. Касательная к первой окружности, проходящая через точку L, пересекает вторую окружность в точках A и B (точка B лежит между A и L). Известно, что BM = 3 и KM = 1. Найдите длину отрезка KL и расстояние от точки L до центра окружности, касающейся отрезка KB и продолжений отрезков AB и AK за точки B и K соответственно.
Вписанная окружность треугольника ABC (AB > BC) касается сторон AB и AC в точках P и Q соответственно, RS – средняя линия, параллельная стороне AB, T – точка пересечения прямых PQ и RS. Докажите, что точка T лежит на биссектрисе угла B треугольника ABC.
Страница: << 124 125 126 127 128 129 130 >> [Всего задач: 1024] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |