ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
В окружность радиуса
![]() |
Страница: << 150 151 152 153 154 155 156 >> [Всего задач: 2247]
В выпуклом четырёхугольнике ABCD точка M – середина диагонали AC, точка N – середина диагонали BD. Прямая MN пересекает стороны AB и CD в точках M' и N'. Доказать, что если MM' = NN', то BC || AD.
В треугольнике ABC сторона BC равна полусумме двух других сторон. Через точку A и середины B', C' сторон AB и AC проведена окружность Ω и к ней из центра тяжести треугольника проведены касательные. Доказать, что одна из точек касания является центром I вписанной окружности треугольника ABC.
В окружность радиуса
Страница: << 150 151 152 153 154 155 156 >> [Всего задач: 2247] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |