ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Игорь закрасил в квадрате 6×6 несколько клеток. После этого оказалось, что во всех квадратиках 2×2 одинаковое число закрашенных клеток и во всех полосках 1×3 одинаковое число закрашенных клеток. Докажите, что старательный Игорь закрасил все клетки.

   Решение

Задачи

Страница: << 184 185 186 187 188 189 190 >> [Всего задач: 2440]      



Задача 102964

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 5,6,7

Петя и Миша играют в такую игру. Петя берёт в каждую руку по монетке: в одну – 10 коп., а в другую – 15. После этого содержимое левой руки он умножает на 4, 10, 12 или 26, а содержимое правой руки – на 7, 13, 21 или 35. Затем Петя складывает два получившихся произведения и называет Мише результат. Может ли Миша, зная этот результат, определить, в какой руке у Пети – правой или левой – монета достоинством в 10 коп.?

Прислать комментарий     Решение

Задача 103794

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 6,7,8

Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.

Прислать комментарий     Решение

Задача 103869

Темы:   [ Ребусы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2+
Классы: 6,7,8

Решите ребус:  БАО×БА×Б = 2002.

Прислать комментарий     Решение

Задача 103949

Темы:   [ Подсчет двумя способами ]
[ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 6,7,8

Игорь закрасил в квадрате 6×6 несколько клеток. После этого оказалось, что во всех квадратиках 2×2 одинаковое число закрашенных клеток и во всех полосках 1×3 одинаковое число закрашенных клеток. Докажите, что старательный Игорь закрасил все клетки.

Прислать комментарий     Решение

Задача 104015

Темы:   [ Арифметика остатков (прочее) ]
[ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 7,8,9

Олег собрал мешочек монет. Саша пересчитал их, и оказалось, что если разделить все монеты на пять равных кучек, то останется две лишние монеты. А если на четыре равные кучки – останется одна лишняя монета. В то же время монетки можно разделить на три равные кучки. Какое наименьшее число монет могло быть у Олега?

Прислать комментарий     Решение

Страница: << 184 185 186 187 188 189 190 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .