Страница:
<< 4 5 6 7 8
9 10 >> [Всего задач: 47]
|
|
Сложность: 3 Классы: 10,11
|
Объём параллелепипеда равен
V . Найдите объём многогранника,
вершинами которого являются центры граней данного параллелепипеда.
|
|
Сложность: 3+ Классы: 10,11
|
По рёбрам выпуклого многогранника с 2003 вершинами проведена замкнутая ломаная, проходящая через каждую вершину ровно один раз. Докажите, что в каждой из частей, на которые эта ломаная делит поверхность многогранника, количество граней с нечётным числом сторон нечётно.
|
|
Сложность: 3+ Классы: 10,11
|
Придумайте многогранник, у которого нет трех граней с одинаковым числом
сторон.
|
|
Сложность: 3+ Классы: 9,10,11
|
Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым
числом сторон.
|
|
Сложность: 4 Классы: 10,11
|
На гранях двугранного угла с ребром
AD лежат точки
B и
C .
Отрезок
DE параллелен плоскости треугольника
ABC . В пирамиду
BCDE вписан шар. Отношение расстояния от его центра до прямой
DE к расстоянию от прямой
DE до плоскости
ABC равно
k .
Пусть точка
B' – проекция точки
B на плоскость
CDE . Известно,
что
tg B'DE: tg BDE =l . Через середину отрезка
AD
проведена плоскость
P , параллельная плоскости
ABC . Найдите площадь
сечения плоскостью
P многогранника
ABCDE , составленного из треугольных
пирамид
ABCD и
BCDE , если известно, что площадь грани
ABC равна
S ,
а сумма площадей всех граней пирамиды
BCDE равна
.
Страница:
<< 4 5 6 7 8
9 10 >> [Всего задач: 47]