ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что прямые, заданные уравнениями y = k1x + l1 и y = k2x + l2 и не параллельные координатным осям, перпендикулярны тогда и только тогда, когда k1k2 = - 1.

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 113]      



Задача 57661

Темы:   [ Метод координат на плоскости ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3+
Классы: 8,9,10

Диаметры AB и CD окружности S перпендикулярны. Хорда EA пересекает диаметр CD в точке K, хорда EC пересекает диаметр AB в точке L. Докажите, что если CK : KD = 2 : 1, то AL : LB = 3 : 1.
Прислать комментарий     Решение


Задача 108552

Темы:   [ Метод координат на плоскости ]
[ Скалярное произведение. Соотношения ]
Сложность: 3+
Классы: 8,9

Докажите, что прямые, заданные уравнениями y = k1x + l1 и y = k2x + l2 и не параллельные координатным осям, перпендикулярны тогда и только тогда, когда k1k2 = - 1.

Прислать комментарий     Решение


Задача 108534

Темы:   [ Метод координат на плоскости ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4-
Классы: 8,9

Докажите, что любая прямая в декартовых координатах xOy имеет уравнение вида ax + by + c = 0. где a, b, c — некоторые числа, причём хотя бы одно из чисел a, b отлично от нуля.

Прислать комментарий     Решение


Задача 108558

Тема:   [ Метод координат на плоскости ]
Сложность: 4-
Классы: 8,9

Докажите, что расстояние от точки M(x0;y0) до прямой, заданной уравнением ax + by + c = 0, равно

$\displaystyle {\frac{\vert ax_{0}+ by_{0}+ c\vert}{\sqrt{a^{2}+ b^{2}}}}$.

Прислать комментарий     Решение


Задача 65936

Темы:   [ Метод координат на плоскости ]
[ Поворотная гомотетия (прочее) ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Дана окружность с центром в начале координат.
Докажите, что найдётся окружность меньшего радиуса, на которой лежит не меньше точек с целыми координатами.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .