ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность, проходящая через вершины A и C треугольника ABC, пересекает сторону AB в её середине D, а сторону BC – в точке E. Окружность, проходящая через точку E и касающаяся в точке C прямой AC, пересекает прямую DE в точке F. K – точка пересечения прямых AC и DE.
Докажите, что прямые CF, AE и BK пересекаются в одной точке.

   Решение

Задачи

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 496]      



Задача 108185

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

На стороне BC выпуклого четырёхугольника ABCD взяты точки E и F (точка E ближе к точке B , чем точка F ). Известно, что BAE = CDF и EAF = FDE . Докажите, что FAC = EDB .
Прислать комментарий     Решение


Задача 108655

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол равен половине центрального ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

Биссектриса угла A параллелограмма ABCD пересекает прямые BC и CD в точках X и Y . Точка A' симметрична точке A относительно прямой BD . Докажите, что точки C , X , Y и A' лежат на одной окружности.
Прислать комментарий     Решение


Задача 108672

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Замечательное свойство трапеции ]
[ Вписанные четырехугольники (прочее) ]
[ Угол между касательной и хордой ]
Сложность: 4
Классы: 8,9

Окружность, проходящая через вершины A и C треугольника ABC, пересекает сторону AB в её середине D, а сторону BC – в точке E. Окружность, проходящая через точку E и касающаяся в точке C прямой AC, пересекает прямую DE в точке F. K – точка пересечения прямых AC и DE.
Докажите, что прямые CF, AE и BK пересекаются в одной точке.

Прислать комментарий     Решение

Задача 108883

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Внутри выпуклого четырёхугольника ABCD выбрана точка O , не лежащая на диагонали BD , причём ODC = CAB и OBC = CAD . Докажите, что ACB = OCD .
Прислать комментарий     Решение


Задача 108895

Темы:   [ Конкуррентность высот. Углы между высотами. ]
[ Три точки, лежащие на одной прямой ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

В выпуклом четырёхугольнике ABCD  ∠B = ∠D,  а центр описанной окружности треугольника ABC, ортоцентр треугольника ADC и вершина B лежат на одной прямой. Докажите, что ABCD – параллелограмм.

Прислать комментарий     Решение

Страница: << 75 76 77 78 79 80 81 >> [Всего задач: 496]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .