ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У ведущего есть колода из 52 карт. Зрители хотят узнать, в каком порядке лежат карты (при этом не уточняя   сверху вниз или снизу вверх). Разрешается задавать ведущему вопросы вида "Сколько карт лежит между такой-то и такой-то картами?". Один из зрителей подсмотрел, в каком порядке лежат карты. Какое наименьшее число вопросов он должен задать, чтобы остальные зрители по ответам на эти вопросы могли узнать порядок карт в колоде?

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 367]      



Задача 116213

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
[ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 7,8,9

Автор: Bapat R.B.

В каждой клетке квадратной таблицы написано по числу. Известно, что в каждой строке таблицы сумма двух наибольших чисел равна a,
а в каждом столбце сумма двух наибольших чисел равна b. Докажите, что  a = b.

Прислать комментарий     Решение

Задача 116229

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
[ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Bapat R.B.

В каждой клетке квадратной таблицы написано по действительному числу. Известно, что в каждой строке таблицы сумма k наибольших чисел равна a, а в каждом столбце таблицы сумма k наибольших чисел равна b.
  а) Докажите, что если  k = 2,  то  a = b.
  б) В случае  k = 3  приведите пример такой таблицы, для которой  a ≠ b.

Прислать комментарий     Решение

Задача 116722

Темы:   [ Теория алгоритмов (прочее) ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 10,11

Автор: Жуков Г.

Банк обслуживает миллион клиентов, список которых известен Остапу Бендеру. У каждого есть свой PIN-код из шести цифр, у разных клиентов коды разные. Остап Бендер за один ход может выбрать любого клиента, которого он еще не выбирал, и подсмотреть у него цифры кода на любых N позициях (у разных клиентов он может выбирать разные позиции). Остап хочет узнать код миллионера Корейко. При каком наименьшем N он гарантированно сможет это сделать?

Прислать комментарий     Решение

Задача 98375

Темы:   [ Криптография ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
[ Принцип крайнего (прочее) ]
Сложность: 5-
Классы: 8,9,10

Дима придумал секретный шифр: каждая буква заменяется на слово длиной не больше 10 букв. Шифр называется хорошим, если всякое зашифрованное слово расшифровывается однозначно. Серёжа убедился (с помощью компьютера), что если зашифровать слово длиной не больше 10000 букв, то результат расшифровывается однозначно. Следует ли из этого, что шифр хороший? (В алфавите 33 буквы, под "словом" мы понимаем любую последовательность букв, независимо от того, имеет ли она смысл.)

Прислать комментарий     Решение

Задача 109194

Темы:   [ Четность и нечетность ]
[ Принцип Дирихле (прочее) ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 5-
Классы: 8,9,10

У ведущего есть колода из 52 карт. Зрители хотят узнать, в каком порядке лежат карты (при этом не уточняя   сверху вниз или снизу вверх). Разрешается задавать ведущему вопросы вида "Сколько карт лежит между такой-то и такой-то картами?". Один из зрителей подсмотрел, в каком порядке лежат карты. Какое наименьшее число вопросов он должен задать, чтобы остальные зрители по ответам на эти вопросы могли узнать порядок карт в колоде?

Прислать комментарий     Решение

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 367]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .