ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В числе  a = 0,12457...  n-я цифра после запятой равна цифре слева от запятой в числе    Докажите, что α – иррациональное число.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



Задача 109196

Темы:   [ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
Сложность: 4-
Классы: 9,10,11

В числе  a = 0,12457...  n-я цифра после запятой равна цифре слева от запятой в числе    Докажите, что α – иррациональное число.

Прислать комментарий     Решение

Задача 60847

Темы:   [ Теория алгоритмов (прочее) ]
[ Периодические и непериодические дроби ]
[ Рациональные и иррациональные числа ]
[ Периодичность и непериодичность ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Коля Васин задумал написать программу, которая дала бы возможность компьютеру печатать одну за другой цифры десятичной записи числа . Докажите, что даже если бы машина не ломалась, то Колина затея все равно бы не удалась, и рано или поздно компьютер напечатал бы неверную цифру.

Прислать комментарий     Решение

Задача 60844

Темы:   [ Принцип Дирихле (прочее) ]
[ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
Сложность: 3+
Классы: 8,9,10

Докажите, что число рационально тогда и только тогда, когда оно представляется конечной или периодической десятичной дробью.

Прислать комментарий     Решение

Задача 79382

Темы:   [ Периодичность и непериодичность ]
[ Десятичная система счисления ]
[ Периодические и непериодические дроби ]
Сложность: 3+
Классы: 8,9,10

a1, a2, a3, ..., an, ... – возрастающая последовательность натуральных чисел. Известно, что  an+1 ≤ 10an  при всех натуральных n.
Доказать, что бесконечная десятичная дробь 0,a1a2a3..., полученная приписыванием этих чисел друг к другу, непериодическая.

Прислать комментарий     Решение

Задача 109612

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
[ Периодические и непериодические дроби ]
[ Периодичность и непериодичность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Назовём натуральные числа похожими, если они записываются с помощью одного и того же набора цифр (например, для набора цифр 1, 1, 2 похожими будут числа 112, 121, 211). Докажите, что существуют такие три похожих 1995-значных числа, в записи которых нет нулей, что сумма двух из них равна третьему.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .