ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны скрещивающиеся прямые a и b и плоскость α , перпендикулярная прямой a и пересекающая её в точке A . Докажите, что расстояние между прямыми a и b равно расстоянию от точки A до ортогональной проекции b' прямой b на плоскость α , а угол между прямыми b и b' дополняет до 90o угол между прямыми a и b .

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 185]      



Задача 109098

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 10,11

Известно, что некоторая точка M равноудалена от двух пересекающихся прямых m и n . Докажите, что ортогональная проекция точки M на плоскость прямых m и n лежит на биссектрисе одного из углов, образованных прямыми m и n .
Прислать комментарий     Решение


Задача 109099

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Ортогональная проекция (прочее) ]
[ Вневписанные окружности ]
Сложность: 3
Классы: 10,11

Точка M равноудалена от трёх прямых AB , BC и AC . Докажите, что ортогональная проекция точки M на плоскость ABC является центром вписанной окружности либо одной из вневписанных окружностей треугольника ABC .
Прислать комментарий     Решение


Задача 109101

Темы:   [ Теорема о трех перпендикулярах ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 10,11

Прямая l проходит через точку, лежащую на окружности с центром O и радиусом r . Известно, что ортогональной проекцией прямой l на плоскость окружности является прямая, касающаяся этой окружности. Найдите расстояние от точки O до прямой l .
Прислать комментарий     Решение


Задача 109347

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Ортогональная проекция (прочее) ]
Сложность: 3
Классы: 10,11

Даны скрещивающиеся прямые a и b и плоскость α , перпендикулярная прямой a и пересекающая её в точке A . Докажите, что расстояние между прямыми a и b равно расстоянию от точки A до ортогональной проекции b' прямой b на плоскость α , а угол между прямыми b и b' дополняет до 90o угол между прямыми a и b .
Прислать комментарий     Решение


Задача 109348

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Ортогональная проекция (прочее) ]
[ Куб ]
Сложность: 3
Классы: 10,11

Дан единичный куб ABCDA1B1C1D1 , M – середина BB1 . Найдите угол и расстояние между прямыми AB1 и CM . В каком отношении общий перпендикуляр этих прямых делит отрезки CM и AB1 ?
Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 185]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .