ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В вершинах куба записали восемь различных натуральных чисел, а на каждом его ребре – наибольший общий делитель двух чисел, записанных на концах этого ребра. Могла ли сумма всех чисел, записанных в вершинах, оказаться равной сумме всех чисел, записанных на рёбрах? Решение |
Страница: << 10 11 12 13 14 15 16 [Всего задач: 76]
В вершинах куба записали восемь различных натуральных чисел, а на каждом его ребре – наибольший общий делитель двух чисел, записанных на концах этого ребра. Могла ли сумма всех чисел, записанных в вершинах, оказаться равной сумме всех чисел, записанных на рёбрах?
Страница: << 10 11 12 13 14 15 16 [Всего задач: 76] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|