ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В стране несколько городов, некоторые пары городов соединены дорогами. При этом из каждого города выходит хотя бы три дороги.
Докажите, что существует циклический маршрут, длина которого не делится на 3.

   Решение

Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 383]      



Задача 98603

Темы:   [ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Внутренность и внешность. Лемма Жордана ]
[ Оценка + пример ]
Сложность: 4+
Классы: 9,10,11

а) Электрическая схема имеет вид решётки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от любого узла к любому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для решётки 7×7 (всего 64 узла).

Прислать комментарий     Решение

Задача 105160

Темы:   [ Обход графов ]
[ Ориентированные графы ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10,11

В стране несколько городов, соединённых дорогами с односторонним и двусторонним движением. Известно, что из каждого города в любой другой можно проехать ровно одним путём, не проходящим два раза через один и тот же город. Докажите, что страну можно разделить на три губернии так, чтобы ни одна дорога не соединяла два города из одной губернии.

Прислать комментарий     Решение

Задача 109427

Темы:   [ Математическая логика (прочее) ]
[ Ориентированные графы ]
[ Кооперативные алгоритмы ]
Сложность: 4+
Классы: 6,7,8,9

Кощей Бессмертный похитил у царя трёх дочерей. Отправился Иван-царевич их выручать. Приходит он к Кощею, а тот ему и говорит: "Завтра поутру увидишь пять заколдованных девушек. Три из них – царёвы дочери, а ещё две – мои. Для тебя они будут неотличимы, а сами друг дружку различать смогут. Я подойду к одной из них и стану у неё спрашивать про каждую из пятерых: "Это царевна?". Она может отвечать и правду, и неправду, но ей дозволено назвать царевнами ровно двоих (себя тоже можно называть). Потом я так же опрошу каждую из остальных девушек, и они тоже должны будут назвать царевнами ровно двоих. Если после этого угадаешь, кто из них и вправду царевны, отпущу тебя восвояси невредимым. А если ещё и догадаешься, которая царевна старшая, которая средняя, а которая младшая, то и их забирай с собой". Иван может передать царевнам записку, чтобы научить их, кого назвать царевнами. Может ли он независимо от ответов Кощеевых дочерей
  а) вернуться живым?
  б) увезти царевен с собой?

Прислать комментарий     Решение

Задача 109726

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Принцип крайнего (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 4+
Классы: 8,9,10

В стране несколько городов, некоторые пары городов соединены дорогами. При этом из каждого города выходит хотя бы три дороги.
Докажите, что существует циклический маршрут, длина которого не делится на 3.

Прислать комментарий     Решение

Задача 66972

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Планарные графы. Формула Эйлера ]
Сложность: 4+
Классы: 9,10,11

Автор: Saghafian M.

Назовем расстоянием между треугольниками $A_1A_2A_3$ и $B_1B_2B_3$ наименьшее из расстояний $A_iB_j$. Можно ли так расположить на плоскости пять треугольников, чтобы расстояние между любыми двумя из них равнялось сумме радиусов их описанных окружностей?
Прислать комментарий     Решение


Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 383]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .