ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Последовательность {an} строится следующим образом: a1 = p – простое число, имеющее ровно 300 ненулевых цифр, an+1 – период десятичной дроби 1/an, умноженный на 2. Найдите число a2003. Решение |
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 231]
На доске написали 100 дробей, у которых в числителях стоят все числа от 1 до 100 по одному разу и в знаменателях стоят все числа от 1 до 100 по одному разу. Оказалось, что сумма этих дробей есть несократимая дробь со знаменателем 2. Докажите, что можно поменять местами числители двух дробей так, чтобы сумма стала несократимой дробью с нечётным знаменателем.
Периодом дроби 1/7 является число N = 142857. Оно обладает следующим свойством: сумма двух половин периода – число из одних девяток
n школьников хотят разделить поровну m одинаковых шоколадок, при этом каждую шоколадку можно разломить не более одного раза.
Последовательность {an} строится следующим образом: a1 = p – простое число, имеющее ровно 300 ненулевых цифр, an+1 – период десятичной дроби 1/an, умноженный на 2. Найдите число a2003.
Известно, что доля блондинов среди голубоглазых больше чем доля блондинов
среди всех людей.
Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 231] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|