Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 70]
|
|
Сложность: 4+ Классы: 9,10,11
|
а) Известно, что область определения функции f(x) – отрезок [–1, 1] и f(f(x)) = – x при всех x, а её график является объединением конечного числа точек и интервалов. Нарисовать график такой функции f(x).
б) Можно ли это сделать, если область определения функции – интервал (–1, 1)? Вся числовая ось?
|
|
Сложность: 4+ Классы: 10,11
|
Пусть P(x) – многочлен степени n > 1 с целыми коэффициентами, k – произвольное натуральное число. Рассмотрим многочлен
Qk(x) = P(P(...P(P(x))...)) (P применён k раз). Докажите, что существует не более n целых чисел t, при которых Qk(t) = t.
|
|
Сложность: 4+ Классы: 9,10,11
|
Дана функция
f(
x)
= | 4
- 4
|x|| - 2
. Сколько решений имеет уравнение
f(
f(
x))
= x ?
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что не существует никакой (даже разрывной) функции y = f(x), для которой f(f(x)) = x² – 1996 при всех x.
|
|
Сложность: 5 Классы: 8,9,10
|
Володя решил стать великим писателем. Для этого он каждой букве русского языка сопоставил слово, содержащее эту букву. Потом написал слово, сопоставленное букве "A". Дальше каждую букву в нем заменил на сопоставленное ей слово (разделяя слова пробелами), потом в получившемся тексте вновь заменил каждую букву на сопоставленное ей слово, и так всего 40 раз. Володин текст начинается так: "РЯД КОРАБЛЕЙ НА ДРЕМЛЮЩИХ МОРЯХ". Докажите, что этот оборот встречается в Володином тексте еще хотя бы раз.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 70]