ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Ненулевые числа a и b удовлетворяют равенству  a²b²(a²b² + 4) = 2(a6 + b6).  Докажите, что хотя бы одно из них иррационально.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 147]      



Задача 110047

Темы:   [ Рациональные и иррациональные числа ]
[ Разложение на множители ]
Сложность: 4-
Классы: 8,9,10

Ненулевые числа a и b удовлетворяют равенству  a²b²(a²b² + 4) = 2(a6 + b6).  Докажите, что хотя бы одно из них иррационально.

Прислать комментарий     Решение

Задача 110085

Темы:   [ Рациональные и иррациональные числа ]
[ Уравнения в целых числах ]
Сложность: 4-
Классы: 10,11

Действительные числа x и y таковы, что для любых различных простых нечётных p и q число  xp + yq   рационально.
Докажите, что x и y – рациональные числа.

Прислать комментарий     Решение

Задача 35644

Темы:   [ Счетные и несчетные подмножества ]
[ Покрытия ]
Сложность: 4
Классы: 10,11

Докажите, что рациональные числа из отрезка [0;1] можно покрыть системой интервалов суммарной длины не больше 1/1000.
Прислать комментарий     Решение


Задача 60851

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 8,9,10

Докажите иррациональность следующих чисел:

а)   ;

б)   ;

в)   ;

г)   ;

д)  cos 10° ;

е)  tg 10° ;

ж)  sin 1° ;

з)  log23 .

Прислать комментарий     Решение

Задача 64767

Темы:   [ Рациональные и иррациональные числа ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

В республике математиков выбрали число  α > 2  и выпустили монеты достоинствами в 1 рубль, а также в αk рублей при каждом натуральном k. При этом α было выбрано так, что достоинства всех монет, кроме самой мелкой, иррациональны. Могло ли оказаться, что любую сумму в натуральное число рублей можно набрать этими монетами, используя монеты каждого достоинства не более 6 раз?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 147]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .