ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости расположено [ n] прямоугольников со сторонами, параллельными осям координат. Известно, что любой прямоугольник пересекается хотя бы с n прямоугольниками. Доказать, что найдется прямоугольник, пересекающийся со всеми прямоугольниками. Решение |
Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 501]
Из вершины A квадрата ABCD внутрь квадрата проведены два луча, на которые опущены перпендикуляры BK, BL, DM, DN из вершин B и D. Докажите, что отрезки KL и MN равны и перпендикулярны.
Дан квадрат. Найдите геометрическое место середин гипотенуз прямоугольных треугольников, вершины которых лежат на попарно различных сторонах квадрата и не совпадают с его вершинами.
Продолжения сторон AB и CD вписанного четырёхугольника ABCD пересекаются в точке P, а продолжения BC и AD — в точке Q. Докажите, что точки пересечения биссектрис углов AQB и BPC со сторонами четырёхугольника являются вершинами ромба.
Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 501] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|