ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске был нарисован четырехугольник, в который можно вписать и около которого можно описать окружность. В нем отметили центры этих окружностей и точку пересечения прямых, соединяющих середины противоположных сторон, после чего сам четырехугольник стерли. Восстановите его с помощью циркуля и линейки. Решение |
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 496]
а) внешней, если оба касания внешние или внутренние одновременно; б) внутренней, если одно касание внутреннее, а другое внешнее.
а) (П.Рябов) Докажите, что точка $R$ пересечения $PM$ и $NQ$ равноудалена от $A$ и $C$. б) (А.Заславский) Пусть $BR$ пересекает $AC$ в точке $S$. Докажите, что $MN\perp OS$, где $O$ – центр описанной окружности треугольника $ABC$.
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 496] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|