ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Боковое ребро правильной треугольной призмы ABCA1B1C1 равно стороне основания ABC . Плоскость P пересекает стороны основания AB и AC и боковые рёбра CC1 и BB1 в точках K , L , M и N соответственно. Площади фигур AKL , CLM и CMNB равны , и площади грани, в которой каждая из них находится. В каком отношении плоскость P делит объём призмы?

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 [Всего задач: 95]      



Задача 102525

Темы:   [ Теорема синусов ]
[ Теорема косинусов ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

В треугольнике BCD  BC = 3,  CD = 5.  Из вершины C проведён отрезок CM  (MBD),  причём  ∠BCM = 45°  и  ∠MCD = 60°.
  а) В каком отношении точка M делит сторону BD?
  б) Вычислите длины отрезков BM и MD.

Прислать комментарий     Решение

Задача 53856

 [Теорема Чевы]
Темы:   [ Теоремы Чевы и Менелая ]
[ Две пары подобных треугольников ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
[ Центр масс ]
Сложность: 4-
Классы: 8,9

Пусть точки A1, B1 и C1 принадлежат сторонам соответственно BC, AC и AB треугольника ABC.
Докажите, что отрезки AA1, BB1, CC1 пересекаются в одной точке тогда и только тогда, когда  

Прислать комментарий     Решение

Задача 111414

Темы:   [ Боковая поверхность тетраэдра и пирамиды ]
[ Свойства сечений ]
[ Правильная призма ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 4
Классы: 10,11

Боковое ребро правильной треугольной призмы ABCA1B1C1 равно стороне основания ABC . Плоскость P пересекает стороны основания AB и AC и боковые рёбра CC1 и BB1 в точках K , L , M и N соответственно. Площади фигур AKL , CLM и CMNB равны , и площади грани, в которой каждая из них находится. В каком отношении плоскость P делит объём призмы?
Прислать комментарий     Решение


Задача 52381

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

В окружность вписан четырёхугольник ABCD, причём AB является диаметром окружности. Диагонали AC и BD пересекаются в точке M. Известно, что  BC = 3,  CM = ¾,  а площадь треугольника ABC втрое больше площади треугольника ACD. Найдите AM.

Прислать комментарий     Решение

Задача 98468

Темы:   [ Трапеции (прочее) ]
[ Площадь четырехугольника ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства параллелограмма ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

Автор: Сонкин М.

В трапеции ABCD площади 1 основания BC и AD относятся как  1 : 2.  Пусть K – середина диагонали AC. Прямая DK пересекает сторону AB в точке L. Найдите площадь четырёхугольника BCKL.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 [Всего задач: 95]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .