ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Окружность, построенная как на диаметре на меньшей боковой стороне прямоугольной трапеции, касается большей боковой стороны, равной a.
Найдите среднюю линию трапеции.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 180]      



Задача 105182

Темы:   [ Тетраэдр (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 10,11

Существует ли тетраэдр, все грани которого — равные прямоугольные треугольники?

Прислать комментарий     Решение

Задача 108068

Темы:   [ Вписанный угол равен половине центрального ]
[ Медиана, проведенная к гипотенузе ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Известно, что вершины квадрата T принадлежат прямым, содержащим стороны квадрата P, а вписанная окружность квадрата T совпадает с описанной окружностью квадрата P. Найдите углы восьмиугольника, образованного вершинами квадрата P и точками касания окружности со сторонами квадрата T, и величины дуг, на которые вершины восьмиугольника делят окружность.

Прислать комментарий     Решение

Задача 108131

Темы:   [ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC медиана BM равна стороне AC. На продолжениях сторон BA и AC за точки A и C выбраны соответственно точки D и E, причём
AD = AB  и  CE = CM.  Докажите, что прямые DM и BE перпендикулярны.

Прислать комментарий     Решение

Задача 108251

Темы:   [ Неравенство треугольника (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Перенос помогает решить задачу ]
[ Четырехугольник (неравенства) ]
Сложность: 3+
Классы: 8,9

В выпуклый четырёхугольник ABCD, у которого углы при вершинах B и D – прямые, вписан четырёхугольник с периметром P (его вершины лежат по одной на сторонах четырёхугольника ABCD).
  а) Докажите неравенство  P ≥ 2BD.
  б) В каких случаях это неравенство превращается в равенство?

Прислать комментарий     Решение

Задача 115632

Темы:   [ Средняя линия трапеции ]
[ Медиана, проведенная к гипотенузе ]
[ Окружность, вписанная в угол ]
Сложность: 3+
Классы: 8,9

Окружность, построенная как на диаметре на меньшей боковой стороне прямоугольной трапеции, касается большей боковой стороны, равной a.
Найдите среднюю линию трапеции.

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 180]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .