ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Стороны треугольника равны 10, 17 и 21. Найдите высоту треугольника, проведённую из вершины наибольшего угла.

   Решение

Задачи

Страница: << 84 85 86 87 88 89 90 [Всего задач: 448]      



Задача 56896

Темы:   [ Окружность, вписанная в угол ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
Сложность: 4+
Классы: 9,10

Окружность S1 вписана в угол A треугольника ABC; окружность S2 вписана в угол B и касается S1 (внешним образом); окружность S3 вписана в угол C и касается S2; окружность S4 вписана в угол A и касается S3 и т. д. Докажите, что окружность S7 совпадает с S1.

Прислать комментарий     Решение

Задача 115705

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Теорема косинусов ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

Стороны треугольника равны 10, 17 и 21. Найдите высоту треугольника, проведённую из вершины наибольшего угла.
Прислать комментарий     Решение


Задача 116517

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Куб ]
[ Подобные треугольники (прочее) ]
[ Уравнение плоскости ]
[ Теорема о трех перпендикулярах ]
[ Объем тетраэдра и пирамиды ]
[ Теорема косинусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 10,11

В кубе ABCDA1B1C1D1, ребро которого равно 6, точки M и N – середины рёбер AB и B1C1 соответственно, а точка K расположена на ребре DC так, что
DK = 2KC.  Найдите
  а) расстояние от точки N до прямой AK;
  б) расстояние между прямыми MN и AK;
  в) расстояние от точки A1 до плоскости треугольника MNK.

Прислать комментарий     Решение

Страница: << 84 85 86 87 88 89 90 [Всего задач: 448]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .