ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Взаимоотношения между сторонами и углами треугольников. Решение треугольников.
>>
Вписанная, описанная и вневписанная окружности; их радиусы
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи B некоторой трапеции сумма длин боковой стороны и диагонали равна сумме длин
другой боковой стороны и другой диагонали. |
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 211]
Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми тоже равно 1. Из точки C одной окружности проведены к другой касательные CA, CB, вторично пересекающие первую окружность в точках B', A'. Прямые AA' и BB' пересекаются в точке Z. Найдите угол XZY.
B некоторой трапеции сумма длин боковой стороны и диагонали равна сумме длин
другой боковой стороны и другой диагонали.
Стороны треугольника равны 10, 10, 12. Найдите радиусы вписанной и вневписанных окружностей.
Точки M и N принадлежат боковым сторонам соответственно AB и AC равнобедренного треугольника ABC, причём MN || BC, а в трапецию BMNC можно вписать окружность. Её радиус равен R, а радиус вписанной окружности треугольника AMN равен r. Найдите
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 211] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|