ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов. Решение |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 298]
На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов.
Внутри круга отмечены 100 точек, никакие три из которых не лежат на одной прямой.
На плоскости расположено n точек (n > 3), никакие три из которых не лежат на одной прямой.
а) 10 точек, делящие окружность на 10 равных дуг, попарно соединены пятью хордами. Обязательно ли среди них найдутся две хорды одинаковой длины? б) 20 точек, делящие окружность на 20 равных дуг, попарно соединены 10 хордами. Докажите, что среди них обязательно найдутся две хорды одинаковой длины?
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 298] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|