ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На столе белой стороной кверху лежали 100 карточек, у каждой из которых одна сторона белая, а другая чёрная. Костя перевернул 50 карточек, затем Таня перевернула 60 карточек, а после этого Оля – 70 карточек. В результате все 100 карточек оказались лежащими чёрной стороной вверх. Сколько карточек было перевернуто трижды?

   Решение

Задачи

Страница: << 186 187 188 189 190 191 192 >> [Всего задач: 2440]      



Задача 116476

Темы:   [ Текстовые задачи (прочее) ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 7,8,9

На столе белой стороной кверху лежали 100 карточек, у каждой из которых одна сторона белая, а другая чёрная. Костя перевернул 50 карточек, затем Таня перевернула 60 карточек, а после этого Оля – 70 карточек. В результате все 100 карточек оказались лежащими чёрной стороной вверх. Сколько карточек было перевернуто трижды?

Прислать комментарий     Решение

Задача 116494

Темы:   [ Средние величины ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 10,11

На доске записали 20 первых чисел натурального ряда. Когда одно из чисел стёрли, то оказалось, что среди оставшихся чисел одно является средним арифметическим всех остальных. Найдите все числа, которые могли быть стёрты.

Прислать комментарий     Решение

Задача 116853

Темы:   [ Текстовые задачи (прочее) ]
[ Четность и нечетность ]
Сложность: 2+
Классы: 8,9

В формулу линейной функции  y = kx + b  вместо букв k и b впишите числа от 1 до 20 (каждое по одному разу) так, чтобы получилось 10 функций, графики которых проходят через одну и ту же точку.

Прислать комментарий     Решение

Задача 116450

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Делится ли число  2110 – 1  на 2200?

Прислать комментарий     Решение

Задача 30368

Темы:   [ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3-
Классы: 6,7,8

Целые числа a и b таковы, что  56a = 65b.  Докажите, что   a + b  – составное число.

Прислать комментарий     Решение

Страница: << 186 187 188 189 190 191 192 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .